ΕΠΙΣΤΡΟΦΗ
Υλοποίηση μέσω γλώσσας Wolfram στο WLJS Notebook .
Μερικές Διαφορικές Εξισώσεις
Ακριβής ετοιματζίδικη λύση
Clear["Global`*"]
PDE = D[u[x, t], t] == D[u[x, t], {x, 2}]
bound1 = u[0, t] == 0
bound2 = u[Pi, t] == 0
bound3 = Derivative[1, 0][u][0, t] == Exp[-4 t]
bound4 = Derivative[1, 0][u][Pi, t] == -(Cosh[Pi]) Exp[-4 t]
init = u[x, 0] == Sin[x] Cosh[x]
DSolve[{PDE, bound1, bound2, bound3, bound4, init},
u[x, t], {x, t}] // FullSimplify
Αριθμητική λύση
Clear["Global`*"]
PDE = D[u[t, x], t] == D[u[t, x], {x,2}]
init = u[0, x] == 0
bound1 = u[t, 0] == Sin[t]
bound2 = u[t, 5] == 0
NDSolve[{PDE, init, bound1, bound2}, u, {t, 0, 10}, {x, 0, 5}];
Plot3D[Evaluate[u[t, x] /. %], {t, 0, 10}, {x, 0, 5}, PlotRange -> All]
Static web notebook
Author kkoud
Created Tue 9 Sep 2025 21:02:44
Κώστας Κούδας | © 2025